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Abstract
Theories of multiferroic behavior of cycloidal helimagnets are reviewed from the viewpoint of
the spin current or vector spin chirality. Relativistic spin–orbit interaction leads to the coupling
between the spin current and the electric polarization, and hence the ferroelectric and dielectric
responses are a new and important probe for the spin states and their dynamical properties.
Microscopic theories on the ground state polarization for various electronic configurations, the
collective modes including the electromagnon, and the serious treatment of classical/quantum
fluctuations are discussed with comparison to experimental results.

(Some figures in this article are in colour only in the electronic version)

1. Introduction and qualitative argument

Electromagnetism is established by Maxwell equations, which
combine electricity and magnetism to reach the idea of a
unified electromagnetic field. In other words, the electric
and magnetic fields are the two sides of the single field Aμ

(vector potential). This unifying principle has explained and
predicted many new phenomena such as the electromagnetic
wave. Another crucial point here is that electromagnetism is
perfectly consistent with the principle of relativity. Due to
the Lorentz transformation, the magnetic and electric fields
are transmuted to each other in the moving frame. By this
principle, for example, the moving magnetic moment can be
coupled to the electric field. Thus, many of the electromagnetic
phenomena are relativistic in nature, even though the large
velocity of light c makes them rather small.

Let us turn to the electrons in solids, where the charge
and spin degrees of freedom determine their electric and
magnetic properties. Therefore, it is natural to ask the
following question: what is the electromagnetism in solids? Of
course, the electromagnetic responses of a solid are described
by the response function Kμν(q, ω) (μ, ν = 0, 1, 2, 3; q ,
momentum; ω, frequency), which connects the current Jμ

to the external electromagnetic field Aν as Jμ = Kμν Aν .
This response function combined with the Maxwell equations
describes all the electromagnetic phenomena in the linear
response regime. What we are interested in here is the
microscopic mechanism to determine this Kμν(q, ω). To

answer this question, we should start with the relativistic Dirac
equation. However, in condensed matter physics, usually the
non-relativistic Schrödinger equation is used to describe the
electrons. This is because the velocity v of the electrons
is assumed to be slow in solids compared with that of light
c, which is in sharp contrast to high energy particles in
cosmic rays for example. When one consider more carefully,
however, the velocity of electrons is not so small compared
with c, especially when it is bound near the nucleus with
strong potential. This is described by the so-called spin–orbit
interaction, whose Hamiltonian reads

HSO = eh̄

2m2c2
( �p × ∇V (r)) · �s (1)

where the notations are standard. For the centrosymmetric
potential V (r) = V (|r |), equation (1) is reduced to

HSO = λ�� · �s (2)

with �� being the orbital angular momentum �� = �r × �p. This λ

is called the spin–orbit interaction constant, and is proportional
to Z 2, with Z being the atomic number. The orbital of the
electron is more and more localized near the nucleus as Z
increases, and hence λ is also. Therefore, the spin–orbit
interaction is stronger for heavier atoms, and compared with
free electrons in vacuum the strength of the relativistic effect
can be enhanced by a factor of ∼106. In the 3d electrons in
transition-metal oxides, which are the main focus in this article,
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λ is typically of the order of 10–20 meV. It is smaller than the
crystal field splitting, which is of the order of 0.5–1 eV, but still
has novel consequences, as described below.

In the cubic crystal field, the fivefold degenerate
d orbitals are split into threefold degenerate t2g orbitals
(xy, yz, zx orbitals) with lower energy, and doubly degenerate
eg orbitals (x2 − y2, 3z2 − r 2 orbitals) with higher energy.
The orbital angular momentum has no matrix elements within
the eg orbitals, i.e. the orbital angular momentum is quenched
in eg orbitals, while it is finite within t2g orbitals. However,
it should be noted that �� has matrix elements between the
eg and t2g orbitals. Therefore, even when the t2g orbitals are
fully occupied, the spin–orbit interaction plays some role, as
discussed below.

The magnetoelectric (ME) effect is induced by this very
relativistic effect in solids, i.e. the spin–orbit interaction. The
linear ME effect is symbolically written as [1, 2]

P = αH

M = αt E
(3)

where α is the ME tensor and αt is its transposed tensor.
From the symmetry point of view, time-reversal symmetry
T and space-inversion symmetry I are crucial. In order to
have a finite α, both T and I must be broken, since P
and M have the opposite symmetry for both T and I . The
I -symmetry breaking in insulators is naturally accompanied
by ferroelectricity, while the T -symmetry by magnetism.
Therefore, the coexistence of both orders, i.e. the multiferroics,
will lead to an enhanced ME effect.

One important clue to consider the coupling between the
magnetism and electric polarization is the current of the spins,
i.e. the spin current. Spin current is I -symmetry odd and T -
symmetry even, because it is the product of the velocity and
spin operators. This spin current has the same symmetry as
the electric polarization, and hence it is natural to consider
the coupling between the two. Actually, this is the case
when one considers the duality in electromagnetism. In other
words, a circulating magnetic field is induced by the charge
current, while if the magnetic monopole existed in nature its
motion would produce an electric field around it via the duality
principle [3]. Of course there is no magnetic monopole, but
the magnetic dipole exists, and its motion, i.e. the magnetic
dipole current, produces an electric field, which is given by
the superposition of the two shifted circulating electric fields
and is perpendicular to the direction of the spin polarization
and direction of the flow. The magnetic dipole moment is
accompanied by the spin, and hence the spin current produces
the electric field. More explicitly, the spin current is the tensor
quantity J i

j with the two indices corresponding to the direction
of flow j and the direction of the spin polarization i . Therefore,
the electric field or the electric polarization is perpendicular
both to i and j , which is expressed by

Pk ∝ εki j J i
j (4)

where εki j is the totally anti-symmetric tensor. Therefore, spin
current produces electric polarization. Then, the next question
is how to create spin current in magnetic systems.

To answer to this question, we need to look at the quantum
nature of the spin, which is represented by the commutation
relation of the spin components as

[Sα, Sβ ] = ih̄εαβγ Sγ . (5)

This relation is translated into

[Sz, S±] = ±ih̄S±, (6)

where S± = Sx ± iSy . Let us define the ‘phase’ θ related
to the xy-component of the spin as S± ∼ e±iθ . Then the
commutation relation equation (5) can be translated to

[Sz, θ ] = ih̄. (7)

This is analogous to the relation between the position x and
momentum p in the quantum mechanics of a single particle,
or that between the particle number n and the phase ϕ of
the bosonic field operator. From the experience of the latter
system, i.e. the Bose condensed state, which corresponds to
the magnetically ordered state, the twist of the phase produces
the super-flow of its canonical conjugate quantity. Applying
this idea to equation (7), we conclude that the two non-
collinear spins with different θ -values coupled by the exchange
interaction lead to the super-spin current [4]. This super-spin
current leads to the electric polarization �P as given by

�P = η�ei j × (�Si × �Sj ), (8)

where η is a coupling constant proportional to the spin–orbit
interaction. This scenario is embodied by the following cluster
model of magnetic ions sandwiching an oxygen atom.

2. Cluster model

The magnetic exchange interaction between the localized spins
is one of the most important topics in the physics of strongly
correlated electronic systems. Anderson’s idea for the super-
exchange interaction is to consider the hybridization of the
d orbital of the magnetic ions and the p orbitals of the oxygen
atom. The Coulomb interaction on d orbitals leads to the
magnetic moment formation. The total energy depends on
the relative direction of these two spins through the oxygen
atom, which is called the super-exchange interaction [5]. We
have generalized this consideration to take into account the
relativistic spin–orbit interaction, through which the directions
of the spins affect the hybridization between p and d orbitals
and lead to the electric polarization [4]. More explicitly, the
model is schematically shown in figure 1.

We considered the simplest case, where the threefold
degenerate t2g orbitals under cubic crystal field are further split
into 
8 and 
7 states by the spin–orbit interaction. Focusing
on the doubly degenerate 
7 states, which we assumed to be
singly occupied, we construct the effective Hamiltonian for
the hybridized p and d orbitals, and their magnetic ordering,
which we describe in terms of the mean field theory. In other
words, we apply the Weiss field at each magnetic site in the
directions of �e1 and �e2, respectively, which are non-collinear in
general. In this approximation, the problem is reduced to that
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Figure 1. The cluster model for the electric polarization of magnetic
origin. The magnetic ions with d orbitals sandwich an oxygen atom.
The spin current represented by the thick arrow pointing to the right
with the spin polarization perpendicular to it produces the electric
polarization (arrows pointing downward).

of a single particle, and the ground state can be obtained easily
by diagonalizing a small Hamiltonian matrix.

The electric polarization comes from the matrix elements
I = 〈px |z|dzx〉 etc, and the total contribution is given by

�P ∼= −4e

9

(
V

�

)3

I �e12 × (�e1 × �e2). (9)

where �e12 is the unit vector connecting the two magnetic ions
and �(V ) is the energy difference (hybridization) between
the p orbital and the d orbital. This expression is perfectly
consistent with the above consideration in section 1, and the
spin current is the key concept here. It is also confirmed in
the case of double exchange interaction where the 
7 states are
half-filled for each site.

This analysis leads to the prediction of multiferroic
behavior of the various helimagnets. From equation (8)
or (9), it is concluded that a helical magnetic structure
with a spin spiral plane including the direction of the spiral
wavevector results in a ferroelectric moment perpendicular to
it. (figure 2(a)). This is distinct from the conventional improper
ferroelectricity in the sense that even the incommensurate
structure leads to uniform polarization. On the other hand, a
proper spiral structure does not produce electric polarization
(figure 2(b)). This strong directional dependence of the spin
and polarization is an important consequence of spin current
induced ferroelectricity. Before this theory was published,
Kimura et al [6–8] discovered a novel ferroelectric state
driven by the magnetic phase transition in RMnO3. After the
present theory was published, it was revealed that the magnetic
structure is the cycloidal one and the above scenario has been
established for this material [9–12]. Mostovoy [13] developed
a phenomenological theory on the similar mechanism of
multiferroic behavior. A theory taking into account the atomic
displacement has also been proposed [14]. A systematic
discussion of multiferroic behaviors based on group theory
has been also developed [15]. Many other multiferroic
materials have been studied experimentally, and the spin
current mechanism of the multiferroic behaviour has been
confirmed [16–19].

The above analysis has been done for a specialized model,
and one might be suspicious about its validity in the general

Figure 2. The cycloidal (a) and proper spiral (b) helimagnets. Due to
the relation between the spin current �Js and the bond direction, only
the cycloidal structure leads to ferroelectricity.

case. To study all the possible microscopic mechanisms of the
electric polarization of magnetic origin, we have extended the
above analysis to the generic electronic configurations [20, 21].
This is also urgent from the viewpoint of the experiments,
since we now have a variety of multiferroic materials such
as RMnO3 [6–12], Ni3V2O8 [22], Ba0.5Sr1.5Zn2Fe12O22 [23],
CoCr2O4 [24], MnWO4 [25], CuFeO2 [26], LiCuVO4 [27], and
LiCu2O2 [28].

Here we take the perturbative approach in both V/�

and λ/�, where V and � represent the hybridization and
the charge transfer energy between the transition-metal (TM)
d and ligand (L) p orbitals, and λ is the spin–orbit interaction
energy [20, 21]. Note that the spin–orbit interaction has the
matrix elements within the t2g orbitals and between the t2g

and eg orbitals, while not within the eg orbitals. The spin–
orbit interaction at the ligand oxygen site is also considered.
In the previous treatment, we have considered only the
doubly degenerate 
7 states after the splitting by the spin–
orbit interaction λ, and hence the expression for the electric
polarization did not include λ. In the present approach, on the
other hand, it is proportional to λ since we take the first-order
perturbation, which is more realistic because λ ∼ 20 meV is
smaller than the energy denominators such as �, of the order
of a fraction of an eV at least.

Based on this analysis, the polarization ±Pr+ e
2

on the
bond between the sites r and r + e is summarized as

Pr+ e
2

= Pms(mr ·mr+e)e + Pspe × (mr × mr+e)

+ Porb
[
(e ·mr)mr − (e ·mr+e)mr+e

]
, (10)

where mr is the spin direction at r. Pms ∝ (V/�)3 is
the polarization due to the magnetostriction, which does not
require the spin–orbit interaction, Psp ∝ (λ/�)(V/�)3

is that due to the spin current as discussed above, and
Porb ∼ min(λ/V , 1)(V/�) is the term which is nonzero
for the partially filled t2g orbitals found in [20]. These three
contributions appear differently depending on the wavevector
of the polarization as summarized in table 1. Therefore, the
experiments with momentum resolution such as x-ray and
neutron scattering can contribute to the identification of the
microscopic mechanism of the electric polarization.
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Table 1. Fourier components of the electric polarization, which must
be associated with the lattice modulation.

Fourier component Mechanism

P (0) Psp −e × (m1 × m2) sin Q ·e
P (±(πe + Q)) Pms e[m0 · (m1 ± im2)] cos[Q · e/2]
P (±(πe + 2Q)) Pms e(m2

1 + m2
2)/4

P (±Q) Porb ∓i[(e · m0)m± + (e ·m±)m0]
Psp ∓ i

2 e × (m0 × m∓) sin[Q · e/2]
P (±2Q) Porb ∓ i

2 [(e · m±)m±] sin Q · e

The electric polarization of magnetic origin in TbMnO3

has been analyzed as follows. The electronic configuration
of Mn3+ is 3d4. In other words, three electrons occupy the
t2g orbitals and one electron occupies one of the eg orbitals,
with all the spins parallel at each atom due to the Hund’s
coupling. Therefore, the dominant spin–orbit interaction
channels are the t2g–eg mixing [29] and that on the oxygen
p orbitals. We take the TM–O bond length 1.9 Å and the
Clementi–Raimondi effective charges [30] Z eff

Mn3d = 10.53 and
Z eff

O2p = 4.45. Other parameters are chosen as Vl = 2Vr =
−Vpdσ = −1.2 eV, U = 3 eV, and Eeg − Ep = 2 eV. The
spin–orbit couplings for the oxygen 2p and TM 3d orbitals
are chosen as λp = 25 meV and λd = 48 meV [31].
With these values the uniform polarization along the c axis
is estimated as Psp

p ∼ 130 μC m−2 from the oxygen spin–
orbit interaction, and Psp

t2g−eg
∼ 860 μC m−2 from the t2g–eg

mixing with �cf = 2 eV and EJT = 1 eV. The net value
Psp ∼ 990 μC m−2 multiplied by |mr ×mr+e| ≈ sin(0.28π)

in equation (10) gives the uniform c-axis polarization of
∼760 μC m−2, in reasonable agreement with the experimental
value in TbMnO3 [8] (∼700 μC m−2 at 10 K).

3. Collective modes of the cycloidal helimagnets

Up to now we have discussed the ground state properties of the
multiferroic materials, focusing on the interplay between the
magnetic and electric degrees of freedom. The next issue is the
dynamical properties, which can be studied by infrared optical
spectra and inelastic neutron scattering, Theoretically, the
analysis of the collective modes in the cycloidal helimagnets is
the first thing to do, which we describe in this section. Before
going into detailed analysis, let us discuss the qualitative
features of the spin waves in helimagnets. From the symmetry
viewpoint, the order parameter of the usual collinear magnets
such as ferromagnets and antiferromagnets is characterized
by the group SO(3)/U(1), since the rotation around the
direction of the ordered moment remains intact. On the other
hand, the helimagnetic order completely destroys the spin
rotation symmetry and the order parameter belongs to SU(2).
Therefore, there are two Goldstone collectives modes in the
case of collinear magnets, while there are three in helimagnets.
These three collective modes correspond to the rotation of
the ordered moments around three axes. When the rotation
axis is perpendicular to the spin plane, it corresponds to the
phase mode, while the other two correspond to the fluctuations
of the spiral plane. The new aspect here is that the electric
polarization is coupled to the magnetic moments as described

in equation (8). It is easily seen that the polarization changes
only when the spiral plane rotates around the direction of the
wavevector, and the direction of the fluctuating polarization
accompanies it. Therefore, the in-phase fluctuation of both the
spiral plane and polarization forms a collective mode, called
the electromagnon [32], a more detailed treatment of which is
given below [33].

The spin wave theory of helimagnets was developed
long ago by Nagamiya et al [34]. The key observation
is the introduction of the rotating frame with the ordered
moment. In this rotated frame, the ordered moments
align ferromagnetically, and the complications related to the
incommensurate structure can be avoided. We start with the
following Hamiltonian for the spin �Sn [33]:

H = H1 + H2 + H3 + H4, (11)

H1 = −
∑
m,n

J (Rm − Rn)�Sm · �Sn, (12)

H2 = −λ
∑

m

(�um × �ez) · (�Sm × �Sm+1), (13)

H3 =
∑

m

(
κ

2
�u2

m + 1

2M
�P2

m

)
, (14)

H4 =
∑

m

D(Sy
m)2, (15)

where the displacement �u represents the electric polarization,
while the spin–lattice interaction λ stems from the relativistic
spin–orbit interaction. Once the static displacement 〈�u j 〉 is
nonzero and breaks the inversion symmetry, this turns into
the DM interaction. In H3, κ and M are the spring constant
and the effective mass of �um , respectively. The term with the
coefficient D in H4 represents the easy plane spin anisotropy,
and we assume that the ground state spin configuration on the
plane perpendicular to the helical wavevector is ferromagnetic.
Hence we shall focus on the wavenumber q = qz along the
helical wavevector.

We consider the ground state spin configuration as Sz
n =

S cos(Q Rn + φ), Sx
n = S sin(Q Rn + φ), Sy

n = 0, and we
derive the equations of motion for spins and displacements up
to the linear order in the fluctuations of these quantities. In
other words, this is the standard random-phase approximation
(RPA), and the collective modes can be analyzed in this
way. The nontrivial point here is to introduce a rotating
local coordinate system ξ, η, ζ such that the ζ -axis coincides
with the equilibrium spin direction at each site, the ξ -axis is
perpendicular to this direction in the zx-plane, and the η-axis
is parallel to the y-axis [34].

From the equations of motion, and the commutation
relation, we can obtain the retarded Green function as
GR(AB; t − t ′) ≡ −iθ(t − t ′)〈[A(t), B(t ′)]〉, and its
Fourier transform GR(AB; ω) ≡ 1

2π

∫ ∞
−∞ GR

AB(t)eiωt (A, B =
uq, pq, Sξ

q , Sη
q ). The imaginary part of the ac susceptibility is

also defined, as χ ′′(AB; ω) ≡ −Im GR(AB; ω).
The effect of the coupling between the spins and

polarization is usually very weak and difficult to observe
in experiments such as neutron scattering experiments and
antiferromagnetic resonance. Therefore, we will focus below
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on the dynamical dielectric response, where the electromagnon
can manifest itself in experiment. The dynamical dielectric
function εyy(ω) = 1 − 4π(e∗)2GR(u0u0; ω), where e∗ is the
Born charge corresponding to the displacement uy and

GR(u0u0; ω) = ω2 − ω2
p

2π M(ω4 − (ω2
0 + ω2

p)ω
2 + A(Q)Dω2

0)
,

(16)
where ωp = √

A(Q)B(Q) is the frequency of the spin plane
rotation mode along the x-axis and ω0 = √

κ/M is that for the
original phonon. Here A(q) = 2S[J (Q) − J (Q+q)+J (Q−q)

2 +
2λ2 S2

κ
sin2(qa/2)sin2(Qa)], B(q) = 2S[J (Q) − J (q) +

λ2 S2

κ
sin2(Qa) + D]. This response function has poles at ω±,

which are explicitly given by

ω2
± = 1

2

(
ω2

0 + ω2
p ±

√
(ω2

0 + ω2
p)

2 − 4A(Q)Dω2
0

)
. (17)

Assuming D, λ � ω2
0, one can estimate ω− ∼= √

A(Q)D ∼√
8S J D and ω+ ∼= ω0. With these frequencies, εyy(ω) =

1 + ∑
± ω± I±/(ω2 − ω2±) with the ‘oscillator strengths’ I±

being given by I− = 2(e∗)2(ω2
p−ω2−)

Mω−(ω2+−ω2−)
and I+ = 2(e∗)2(ω2+−ω2

p)

Mω+(ω2+−ω2−)
. Note

that the oscillator strength, i.e. the integral − ∫ ∞
0 dω εyy(ω),

is given by (π/2)(I− + I+). Since the ‘+’-mode is basically
the original phonon mode, we consider only the new optical
active mode, i.e. the ‘−’-mode, corresponding to the
electromagnon [32, 33]. The low-frequency behavior of εyy(ω)

is dominated by this electromagnon, having the oscillator
strength I− ∼ p2√J/D as D → 0. This means that the
oscillator strength can be rather large when the anisotropy is
small even though the spin–lattice coupling λ is small.

Interpretation of the experiments on the infrared absorp-
tion of RMnO3 in the terahertz region [35] in terms of this elec-
tromagnon has been done in [33]. Assuming the exchange cou-
pling J1 between the nearest-neighbor spins as 8S J1

∼= 9 meV
for PrMnO3 and 8S J1

∼= 2.4 meV for TbMnO3, D ∼= 0.4 meV
estimated from the neutron scattering experiment [36], and the
spin–lattice coupling λ ∼ 1 meV Å

−1
[14], we can obtain the

static displacement um = 10−3 Å. The Born charge e∗ can
be estimated from the value of electric polarization with the
above um . From the experimentally observed electric polar-
ization along the c-axis Pc ∼ 0.2 μC cm−2 for DyMnO3 [8],
the Born charge e∗ is 16e, which is much greater than the unit
charge. From these values, ω− and I− are independently esti-
mated as ω− ∼ 10 cm−1 and I− ∼ 4 cm−1.

Pimenov et al [35] observed the peak of Im ε at around
20 cm−1, with the magnitude of 1–2 in GdMnO3 and TbMnO3.
This 20 cm−1 is identified with ω−, and the integration of
−Imεyy(ω) over ω gives I− ∼ 12 cm−1, which is a bit larger
than the above theoretical estimate. Also, a neutron scattering
experiment [37] reported the identification of one of the spin
mode branches as the electromagnon.

However, recent experiments have revealed that the
oscillator strength grows and this discrepancy increases even
more as the temperature is further lowered [38, 39]. An
even more serious puzzle is that the anisotropy of the optical
absorption does not change even when the spiral plane changes

from the bc- to the ac-plane, while the electric polarization
associated with the electromagnon should change the direction.
Therefore, the main contribution to the absorption in the
terahertz region has been attributed to the two-magnon
processes in [38], but this issue still remains an important topic
to be studied.

4. Spin fluctuation and chiral spin liquid

As discussed above, the spin current or the vector spin chirality
�Si × �Sj is the key quantity to control the electric polarization.
The ordered ground state and small fluctuation around it have
been discussed up to now, but the spin fluctuation is sometimes
rather large and a non-perturbative treatment is needed, as
in the case of (quasi-) low-dimensional systems [40]. In
particular, there have appeared quasi-one-dimensional [28, 41],
and quasi-two-dimensional [22] helimagnetic systems.

There are many references discussing theoretically the
possible chiral spin liquid state [42–49]. However, it usually
appears only in a tiny region of the global phase diagram,
and the physical mechanism for its appearance has not been
understood yet. We have developed the phenomenological
theory based on the Ginzburg–Landau free energy functional,
to reveal the condition for the chiral spin liquid above the
helimagnetic ordering. The spin in the helical Heisenberg
magnets can be expressed in terms of two independent slowly
varying fields as

�Sr ≈ �ar cos Q · r − �br sin Q · r, (18)

while the GL-functional is given by [50]

H ≈
∫

ddr
[μ

2
(�a2 + �b2) + 1

2

(
(∇�a)2 + (∇�b)2

)

+ u

4
(�a2 + �b2)2 + v((�a2 �b2) − (�a · �b)2)

]
(19)

with a0 being the lattice constant. Quartic interaction terms
with the coupling constants u and v can be obtained by
softening the constraint that amplitudes of spins must be fixed,
�S(r)2 ≈ S2, and the original quartic term u0

6

∫
dr(�S2

r)
2 results

in u = u0 > 0 and v = v0 = −u0/3. The deviation of the ratio
v/u from −1/3 occurs due to the additional interactions and is
an important parameter, as will be discussed below. The helical
and collinear magnetic orders are described by 〈�a〉 × 〈�b〉 �= �0
and 〈�a〉 × 〈�b〉 = �0, respectively. The vector-chiral order is
characterized by 〈�a × �b〉 �= �0.

The mean field phase diagram of the GL theory in
equation (19) is a simple one. For a fixed u > 0, we can
draw the phase diagram in the plane of μ (corresponding to
the temperature) and v. For v < 0, the helimagnetic state
is preferred, while the collinear state is favored by v > 0.
Therefore, the phase diagram is that as shown schematically
by the straight phase boundary lines in figure 3. The collinear
and helimagnetic states are separated by the first-order phase
transition. Then our aim is to study the effects of the (classical)
fluctuation on this phase diagram. For that purpose, we employ
the mode coupling approximation. The readers are referred to
the original paper [40], and we discuss here the physical picture
obtained by the analysis.

5
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Figure 3. The phase diagram of the helimagnet described by
equation (19) taking into account the spin fluctuation. The chiral spin
liquid state is realized above the magnetic ordering for v/u < −1/3.

The mode coupling analysis enables a new composite
order parameter such as 〈�a · �b〉 and 〈�a × �b〉 even without
the magnetic ordering, i.e., 〈�a〉 = 〈�b〉 = �0. Considering
that the canonical model for the helimagnet has the parameter
u = u0 > 0 and v = v0 = −u0/3, we will consider the
possibility of nonzero 〈�a × �b〉 below. Even though we are
treating the classical field, the analogy to the electronic or
bosonic system is useful here. In other words, the �a and �b
fields correspond to the ‘particle’ fields while �a × �b to the
pairing field. In this respect, it is crucial if the interaction
between the �a and �b particles is repulsive or attractive. It
turned out that the �a and �b fields are ‘non-interacting’ when
v/u = −1/3, and v/u < −1/3 corresponds to the attractive
interaction. Very similar to the BCS pairing instability, the
pairing susceptibility of �a and �b fields diverges before the
magnetic ordering occurs. This means that the chiral spin
liquid state appears slightly above the helimagnetic ordering
temperature as shown in figure 3. In this state, 〈�a × �b〉 is finite
while 〈�a〉 = 〈�b〉 = �0.

Now the physical mechanism for the deviation of v/u
from −1/3 is discussed. There are several possible interactions
giving the positive and negative contributions to this ratio.
(i) The magnetostrictive interaction between the spins and
phonons leads to a positive shift after integrating over the
phonon degrees of freedom. (ii) The anti-symmetric DM
coupling [51] between the nearest-neighbor spin pair �Sr and
the phonon contributes negatively to the ratio after integrating
over the phonons. (iii) The four-spin ring-exchange interaction
can contribute both positively and negatively [52, 53]. In other
words, the kinetic ring-exchange process contributes positively
while that of direct Coulomb interaction contributes negatively.
When the negative contributions dominate over the positive
ones, the chiral spin liquid state is expected to be observed
above the magnetic ordering.

Recently, an experiment on Gd(hfac)3NITEt has appeared
which found the two-step phase transition and suggested the
chiral spin liquid state [41]. This is the quasi-one-dimensional
system and Gd has spin 7/2. Therefore, it can be regarded as
a strongly fluctuating classical helimagnet, and offers an ideal
arena to test our theory described above.

The quantum mechanical fluctuation in a helimagnet is
an interesting problem to be studied. As mentioned above,

there have been many theoretical proposals for the ground state
of a quantum helimagnet [47–49], but the finite temperature
properties have not yet been studied. Recently, Furukawa et al
[54] and Katsura et al [55] studied this problem in terms of the
numerical method and Schwinger boson theory, respectively.
The natures of the classical and quantum fluctuations are
different and the phase diagram is quite different. The readers
are referred to the references.

5. Summary and conclusions

In this article, we have reviewed the theoretical studies on
multiferroic helimagnets from the viewpoint of the spin current
or the vector spin chirality. The frustrated spin system is
now viewed from the new aspects, i.e. the ferroelectric and
dielectric response associated with the vector spin chirality.
The ground and excited states are characterized by novel
dielectric properties; i.e., the charge degrees of freedom in
Mott insulators is not silent at all, and rich physics is found
there.

From the viewpoint of spintronics, it is highly desirable to
develop spintronics without dissipation. The magnetoelectric
effect in insulators is a promising direction for this purpose,
and we have shown above that the dissipationless spin current
plays a crucial role there.
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